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SUPPLEMENTARY NOTES
A. What is a gene: Sequence Identity vs. Annotation

Since our ShortBRED marker sequences are built with both functionally selected genes and
known databases, the categories for each gene can end up with high sequence identity ranges.

We cluster our sequences at 95% sequence identity prior to building our marker sequences.
These 95% sequence identity clusters correspond to our ShortBRED IDs. Though most
identically annotated resistance genes are above this 95% threshold, not all meet this criterion.
For ShortBRED ID, ShortBRED counts directly reflect abundance of input sequences.

B. Resistome a-diversity is significantly higher after travel after correlation with
abundance is accounted for.

Since the abundance and a-diversity increases corresponded, we wanted to determine their
relationship in the context of collection timepoint. To understand this relationship, we fitted linear
mixed models (estimated using REML and nloptwrap optimizer) to predict Richness as the
dependent variable (Additional file 2: Table S2). We then compared our different models together
to understand the contribution of the different fixed effects (Additional file 2: Table S3). The
results from our best model (shown in bold on Additional file 2: Table S2 and Additional file 2:
Table S3) are described in Additional file 2: Table S4. This model had log(RPKM) and timepoint
as interacting fixed effects. The model also included Subject id as random effects. Standardized
parameters were obtained by fitting the model on a standardized version of the dataset. Effect sizes
were labeled following Funder et al. 2019 recommendations!. The model's total explanatory power
is substantial (conditional R? = 0.66) and the part related to the fixed effects alone given by the

marginal R? is 0.54. The model's intercept, corresponding to Richness = 0, RPKM = 0, Timepoint
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= Pre-travel and Subject id =R100241, is at-50.31 (SE = 6.60, 95% CI [-63.25, -37.36], p<0.001).
Within this model:

e The effect of log(RPKM) is positive and can be considered as very large and significant
(beta =13.35, SE = 0.86, 95% CI [11.66, 15.05], std. beta = 6.47, p<0.001).

e The effect of TimepointPost-travel is positive and can be considered as very large and
significant (beta = 45.34, SE = 10.01, 95% CI [25.73, 64.96], std. beta = 4.63, p<0.001).

e The effect of log(RPKM):TimepointPost-travel is negative and can be considered as very
large and significant (beta = -4.70, SE = 1.27, 95% CI [-7.19, -2.21], std. beta = -2.00,
p<0.001).

The results from this model clearly show that both resistance gene abundance and travel
contribute strongly to resistome a-diversity. However, though resistance gene abundance is a
strong correlate, timepoint has a much larger effect size, indicating that travel is the major driver
behind increases in resistome o-diversity.

Travel duration was the only other metadata variable given in Additional file 2: Table S1, with a
significant effect on a-diversity. This effect is weak (see below) and including travel duration as
an additional variable in the previous model does not improve the total explanatory power.

e The effect of log(RPKM) is positive and can be considered as very large and significant
(beta=13.17, SE = 0.86, 95% CI [11.49, 14.85], std. beta = 6.39, p <.001).

e The effect of TimepointPost-travel is positive and can be considered as very large and
significant (beta = 44.87, SE = 9.95, 95% CI [25.36, 64.37], std. beta = 4.58, p <.001).

e The effect of Travel duration is positive and can be considered as very small and

significant (beta = 0.16, SE = 0.05, 95% CI [0.06, 0.26], std. beta=0.12, p <.01).
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e The effect of log(RPKM): TimepointPost-travel is negative and can be considered as very
large and significant (beta = -4.63, SE = 1.26, 95% CI [-7.11, -2.15], std. beta =-1.97, p <
.001).

C. Our results on the highest risk travel regions broadly agree with the AMR map
published by the Center for Disease Dynamics, Economics, and Policy (CDDEP)
Tunisia was the only North African country on the CDDEP map
[https://resistancemap.cddep.org/AntibioticResistance.php], and it has an AMR rate in E. coli of
19% against fluoroquinolones and 37% against 3" gen cephalosporins with 78 isolates tested in
2017 (Additional file 2: Table S5). These were the lowest and second lowest AMR rates of any
country tested from the subregion destinations represented in our cohort. Our analysis found that
individuals returning from North Africa had the lowest AMR gene abundance increase, the
lowest AMR gene a-diversity, the fewest AMR gene acquisitions, and the lowest mobile genetic
element detection. Thus, our results from North Africa are consistent with the available data
from the AMR map. By contrast the AMR rates in countries from the other three destination
subregions were all much higher both in the AMR map (Additional file 2: Table S5) and in our
results. However, the AMR rate in the Netherlands was even lower than the AMR rate in Tunisia
by ~3% for fluoroquinolones and ~30% for 3" gen cephalosporins (Additional file 2: Table S5)
and these differences in AMR rate correlated with increased post-travel resistome abundance and
diversity compared to the pre-travel controls. This comparison further highlights that endemic
AMR in a country is correlated with the risk of AMR acquisition and resistome diversification in

travelers visiting that region.
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D. Subregion demonstrates resistome shaping effects better than continent.

If we look at continents instead of travel destinations, we see that Asia has lower B-diversity
than Africa (p=0.0016 [unpaired wilcoxon test]) (Fig. SSA). Though, individuals going to the
same continent had lower post-travel B-diversity than individuals going to different continents
(p=0.15 [unpaired wilcoxon test]), this difference was not statistically significant (Fig. S5B).
However, for individuals going to the same subregion, this B-diversity difference was significant
(p=0.016 [unpaired wilcoxon test]) (Fig. S5C). This shows that subregions within the same
continent do not necessarily act as dyads. The granular subregion level is valuable to
understanding destination specific effects on the resistome.

E. Comparison to Indian resident gut resistomes

We profiled the resistomes of these Indian residents using the same ShortBRED database we
used on our cohort. Next we found the pairwise Bray-Curtis dissimilarity of each sample in our
cohort to each sample in the Indian resident cohort and we subtracted the pre-travel dissimilarity
from the post-travel dissimilarity. This yielded the change in Bray-Curtis dissimilarity to the
Indian residents before and after travel. Finally, we split our cohort into their subregion of travel.
As we expected, we found that the pre-travel samples did not have much variability based on
destination since they have not traveled yet. Interestingly when we look at change in
dissimilarity from the Indian residents, we found that all of our destination groups moved further
away from the Indian residents. This may be explained by the perturbation of travel having a
strong effect even independent of destination. Despite this overall increase and despite
differences in sequencing and extraction methods between the two cohorts, we found that
individuals traveling to Southern Asia (which includes India) had resistomes that were most

similar to the Indian resident's resistomes (Fig. S6).
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F. Resistance gene associations varied by timepoint, microbiota taxonomy, and destination.

In the acquisition analysis, we looked resistance genes using presence or absence in the pre-
travel and post-travel samples. To understand significant differences in abundance at the resistance
gene level between the pre-travel and post-travel, we used MaAsLin22. We conducted our analysis
for resistance genes at the antibiotic class resistance determinant level, at the gene family level,
and at the granular level provided by our 95% identity clustered ShortBRED IDs. MaAsLin2 uses
linear models to perform multivariate associations between omics data like our resistome profiles
and metadata variables like travel and travel destination. Importantly, MaAsLin2 can handle
longitudinal data and account for random effects and multiple hypothesis testing. Thus, we built a
model with our resistome profiles as the response variable and timepoint, travel destination, gut
microbial taxonomy, and subject id as the input variables.

Using MetaPhlAn2, a taxonomic classifier, we identified 70 bacterial families within our gut
microbiome samples®. To determine which taxonomic families to include in the model, we used a
prevalence cutoff of 0.25 and a variance cutoff of 10 (Fig. S9). Eight taxonomic families passed
these filtering thresholds and were included in the model.

At the resistance determinant level, we observed that 5 classes of resistance genes were
significantly associated with the post-travel timepoint while only tetracycline resistance
determinants (p=9.47e-4) were associated with the pre-travel timepoint (Fig. SI0A). Of these,
resistance determinants against trimethoprim (p=1.07e-10) were the most differential. Resistance
determinants against sulfamethoxazole (p=5.99e-7) were also increased which is expected given
the frequency of coformulation for these two drugs. When we look at destination using Northern
Africa as our comparison group we see that the other three regions had several significantly

increased resistance determinants (Fig. S10B). Resistance genes targeting antifolate drugs were
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increased in every region compared to North Africa. Notably, determinants for 3-lactam resistance
and polymyxin resistance were not significant for either timepoint or destination at this grouping
level. Analysis of these resistance determinants with the 8 taxonomic families showed that (-
lactam resistance determinants all together only positively correlated with Prevotellaceae and
polymyxin resistance determinants only positively correlated with Enterobacteriaceae (Fig. S10C).
These results suggest that even at the high-level grouping for target drug affected by resistance
determinants, there are significant correlates within our samples to timepoint, destination, and
taxonomy.

At the gene family level, we have more power to distinguish within resistance classes and we
observe that some (-lactam resistance gene families and some tetracycline resistance gene families
are in fact significantly associated with the post-travel timepoint (Fig. S11A). For -lactamases,
we see that while a few class A and class C bla genes like blacyia (p=0.0356) and blacxa (p=0.0164)
are associated with before travel samples, others like blatem (p=8.31e-10) are strongly associated
with the post-travel timepoint. For tetracycline resistance genes, we see that while ribosomal
protection proteins (p=3.28e-6) are strongly associated with the pre-travel timepoint, the other
mechanisms of tetracycline resistance are associated with the post-travel timepoint. In both of
these cases, it is likely that the results seen in (Fig. S11) were due to opposite effects from different
gene families against the same antibiotics having opposed timepoint associations.

For destinations, we see some potential evidence of continent specific effects with the class A
B-lactamases (Fig. S11B). Specifically, blatem was significantly associated with Southern Asia
(p=0.027) and Southeastern Asia (p=0.0041), but not with Eastern Africa. In contrast, unclassified

class A B-lactamases were significantly associated with Eastern Africa (p=0.00141). This could
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be some example of regional specificity within resistance determinants against specific antibiotic
classes.

When we look at microbial taxonomy we see that the more granular gene family analysis gives
similar insights (Fig. S12). Specifically, we now see significant 3-lactamase genes associated with
Enterobacteriaceae.

Of the 65 resistance genes significantly associated with time, 47 (72%) had significant positive
association with the post-travel samples (Additional file 2: Table S6). This once again highlights
the enrichment of resistance genes post-travel. The enriched genes included class A B-lactamases

like blatem, ampC a class C B-lactamase, and trimethoprim-sulfamethoxazole genes like dfr4 and
sull.

Associations with taxonomy were not as strong as the association with timepoint, but 101
resistance genes had a significant association with a bacterial taxon (Additional file 2: Table S6).
Enterobacteriaceae had the most significantly correlated genes (n=65) with 37 positively correlated
and 28 negatively correlated.

In the region-based analysis, only 5 genes were significantly positively correlated with
Northern Africa compared to the other destinations (Additional file 2: Table S6). Not of the
destination region correlated genes were positively correlated with Northern Africa compared to
Eastern Africa. This trend agrees with the results from our previous analysis of overall resistance
gene abundance by destination and of resistance gene acquisition by destination.

A model including all of the metadata variables from Additional file 2: Table S1 as fixed effects
and Subject ID and travel destination as random effects again confirmed that timepoint was the
major predictor for most resistance genes. Several other metadata variables, including age, tap

water consumption, antibiotic use, corticosteroid use, reason for traveling, raw vegetable
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consumption, salad consumption, foodstall food consumption, hospitalization abroad, and main
travel accommodation were found to have significant effects on a few resistance determinants
(Additional file 2: Table S7). Notably, antibiotic use was associated with slight increase in class
A B-lactamases and aad9, an aminoglycoside nucleotidyltransferase; travel duration was

associated with an increase in catA4, a chloramphenicol acetyltransferase.
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SUPPLEMENTARY TABLE CAPTIONS

Table S1: Netherland traveler cohort metadata

Table S2: Model formulas for resistome a-diversity as a function of AMR gene abundance
Table S3: Model performance statistics for resistome a-diversity as a function of AMR gene
abundance

Table S4: Results from best performing (interaction) model of resistome a-diversity as a function
of AMR gene abundance

Table S5: E. coli resistance data for fluoroquinolones and 3™ gen cephalosporins from Resmap

[https://resistancemap.cddep.org/AntibioticResistance.php] by the Center for Disease Dynamics,

Economics, and Policy. Data from countries in our 4 cohort subregion destinations was included.
To generate these data, bacterial isolates gathered in each country are tested for AMR against
antibiotics using standardized AMR breakpoints
[https://resistancemap.cddep.org/Methodology.php].

Table S6: Results from MaAsLin2 model for AMR genes significantly associated with timepoint,
travel destination, and 8 prevalent taxonomic families.

Table S7: Results from MaAsLin2 model for AMR gene abundance including all cohort metadata
variables from Table S1 as predictor variables and Subject ID and travel destination as random
effects. Source data for this model is available in the source data file.

Table S8: ShortBRED IDs and metadata for genes detected in Netherland traveler stool samples.
Table S9: Antibiotics concentrations used in functional metagenomics screening. The antibiotic

selections were performed in Mueller-Hinton agar with 50 pg/ml kanamycin.
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250 SUPPLEMENTARY FIGURES

251  Fig. S1: Functional metagenomics and ShortBRED database workflow figure.

252 21 functional metagenomics libraries were built using cohort samples with selections against 15
253  antibiotics. The resultant reads were assembled and annotated. AMR genes were then used to build

254  a ShortBRED marker database.
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Fig. S2: Post-travel associated metaresistomes’ timepoints frequently have higher a-
diversity and lower B-diversity

The top panel shows a-diversity (Shannon Index) measurements for the 8 metaresistomes defined
in Main manuscript file: Fig. 3. Boxes are filled according to which timepoint metaresistomes were
significantly associated with (blue for pre-travel, red for post-travel, and black for neither). The
bottom panel shows the Bray-Curtis dissimilarity between metaresistomes. The columns (x-axis)
gives the reference group and the colored text on the plot gives the comparison group. The y-axis
position gives the B-diversity between the reference and comparison groups. All text is colored
according to timepoint association (blue for pre-travel, red for post-travel, and black for neither).

Source data for all panels is provided in the source data file.
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Fig. S3: Supervised clustering shows separation by timepoint and destination

A Capscale ordination by timepoint. Each point on the graph is a single sample and each line on
the graph connects a sample point to the centroid of the cluster for that sample’s timepoint. Blue
points, lines, and labels are for pre-travel samples, and red points, lines, and labels are for post-
travel samples. The p-value (permanova) is given at the top of the figure.

Capscale ordination by destination for pre- (B) and post- (C) travel samples. Each point on the
graph is a single sample and each line on the graph connects a sample point to the centroid of the
cluster for that sample’s destination. For lines, points, and labels, color corresponds to destination
region (Dark blue is Northern Africa, light blue is Eastern Africa, orange is Southern Asia, and red
is Southeastern Asia). P-values (permanova) are given in the top left of each plot. Source data for

all panels is provided in the source data file.
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Fig. S4: Travelers to Southeastern Asia has higher post-travel resistome a-diversity

A Tukey’s range test of post-travel resistome richness by travel destination showing 95% family-
wise confidence level (lines) and mean difference (points) for all pairwise destination comparisons.
Multiple hypothesis corrected p-values are given in line with each comparison. Significant
comparisons are highlighted in red.

B Post-travel resistome richness for all travel destinations where each point is an individual
sample. Boxes give the median and interquartile ranges.

Source data for all panels is provided in the source data file.

16



A

Southeastern Asia—Northern Africaq p=0.000335 : ®
Southeastern Asia—Southern Asiaq p=0.0124 1 ®
Southeastern Asia—Eastern Africa4 p=0.0409 :
Eastern Africa—Northern Africa + . p=0.496
Southern Asia—Northern Africa : * p=0.653
Southern Asia—Eastern Africa - o-! p=0.991
0 . 10
Difference in observed means
B
(1]
(]
o
80 - . o P°
[ ]
[ ] L ¢ ° .. .‘; :. S
& ° . o o0
o ® ° ~ o0 vve
o & e ¢ o ° .‘ °
e
° ° o o °
r' ] .. o ® o °
A 60 ° g% o . o y
o)) ° \ 0 ° ® o
E _ o o ] ® -
9 o [ ) ¢ (]
o : K ° °
(]
(] [ ]
° ° °
40~ °
L] °
° [ ]
[ ] (]
° [ ]
[ ] ° (]

Norther'n Africa

Easterﬁ Africa

Southe'rn Asia Southeas'tern Asia




284

285

286

287

288

289

290

291

Fig. S5: Resistome B-diversity was significantly lower for individuals traveling to the same
Subregion, but not for individuals traveling to the same continent.

B-diversity comparisons between A Africa (blue) and Asia (red-orange), B same continent (gray)
or different continents (green), C same destination subregion (gray) or different destination
subregions (green). Each point is a pairwise Bray-Curtis dissimilarity between two post-travel
samples and the boxes represent the median and interquartile ranges. The distributions are
visualized to the right of the points. P-values (unpaired wilcoxon test) are given near the top of

each plot. Source data for all panels is provided in the source data file.
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Fig. S6: Indian residents’ resistomes were more similar to travelers to Southern Asia than to
travelers to other regions.

A Difference in Bray-Curtis dissimilarity between post- and pre-travel samples by region. Each
point is the difference of two pairwise comparisons between a Dutch traveler and an Indian
resident. The boxplots give the median and interquartile range for each distribution and the shaded
region gives depicts the distribution density. P-values by fdr corrected unpaired wilcoxon test are
given above. B The lines are the 95% confidence intervals and points are the estimates for the
distributions shown in panel A. The dotted black line shows the null hypothesis of no change.

Source data for all panels is provided in the source data file.
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Fig. S7: Relationship between AMR gene prevalence and abundance varies by AMR
mechanism.

The top left panel shows the relationship between AMR gene prevalence (x-axis) and AMR gene
abundance (y-axis). The colors of the points correspond to the mechanism of AMR for the gene
represented by the point. The exploded panels on the bottom right show this same relationship for
the AMR mechanisms considered individually. In these panels, the colors further subdivide the
AMR mechanisms into AMR class. In all panels, the black line is the best fit linear trendline
through the points and the gray shaded region is the 95% confidence interval for this trendline.
The fdr corrected p-value for the relationship is given in the top right of each panel. Source data

for all panels is provided in the source data file.

19



All mechanisms
°

—_

o

o
1

—
o
1

—_
1

AMR Mechanism

° ® Antibiotic Efflux

@® Antibiotic Inactivation

@ Antibiotic Target Alteration

® Antibiotic Target Protection
Antibiotic Target Replacement

0.25 0.50 0.75 1.00
resistance gene prevalence

average abundance (log10 RPKM)

1
1

average abundance (log10 RPKM)

Antibiotic Efflux

p=6.73e-05

—_

o

©

o
1

-

o

o
1

-
o
1

Antibiotic Inactivation

'p=0.000276

ABC Transporter
Aminoglycoside Acetyltransferase
Aminoglycoside Nucleotidyltransferase
Aminoglycoside Phosphotransferase
Chloramphenicol Acetyltransferase
Class A Beta—-lactamase
© Class C Beta-lactamase

, 0.1
Antibiotic Target Alteration Antibiotic Target Protection
' p=0.0551 p=7.87e-08 p=0.835
. _100.01
=
X
\ o {
PR« =
1 o \
! -
l m \
' O 10.04
o
[ ]
LI =
' ®
' O
=
' 2
'S 1.04
'@
)
' S
L )
' >
' ©
0.1
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50
resistance gene prevalence
23S rRNA Methyltransferase

Dihydrofolate reductase

Glycopeptide Resistance Gene Cluster
Lincosamide Nucleotidyltransferase
Macrolide Phosphotransferase

MFS Efflux Pump
Phosphoethanolamine Transferase

Rifamycin resistant beta—subunit
RND Efflux Pump

075 1.00

SMR Efflux Pump
Streptothricin Acetyltransferase

Sulfonamide dihydropteroate synthase
Tetracycline Inactivation Enzyme

Tetracycline ribosomal protection protein
Undecaprenyl pyrophosphate related proteins



311

312

313

314

315

316

Fig. S8: Most AMR genes are acquired during travel.

The results from binomial tests of bias for AMR gene ShortBRED ID acquisition for the post-
travel timepoint. Lines are 95% confidence intervals and points are estimates. P-values (fdr
corrected binomial test) are given at the bottom of the plot for each gene. The dotted line is the
expected value under the null. Lines and points are red if significantly acquired and blue if

significantly lost. Source data is provided in the source data file.
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317  Fig. S9: Only eight bacterial taxa were prevalent with high variance.

318 The x-axis is prevalence and the y-axis is the square root of variance. Dotted lines are the
319  prevalence and variance cutoffs for inclusion in the MaAsLin2 model. Points on the graph are
320  bacterial families that did not meet both of the cutoffs. Families that did meet the cutoff are in red

321  labels. Source data is provided in the source data file.
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Fig. S10: AMR determinants are enriched after travel.

A left panel is log-transformed abundance of significant AMR determinants in pre-travel (red) and
post-travel (blue). Each point is the abundance of the AMR gene in one sample. Boxplots show
the medians and interquartile ranges for these distributions. The right panel gives the model
coefficients for these AMR determinants. B model coefficients for AMR determinants
significantly associated with each subregion are shown. North Africa was the reference group. C
model coefficients for AMR determinants significantly associated with taxonomic families are
shown. In coefficient plots, bars are the coefficients and black lines are the standard deviation.

Source data is provided in the source data file.
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Fig. S11: AMR gene families are enriched after travel.

A left panel is log-transformed abundance of significant AMR gene families in pre-travel (red)
and post-travel (blue). Each point is the abundance of the AMR gene in one sample. Boxplots
show the medians and interquartile ranges for these distributions. The right panel gives the model
coefficients for these AMR determinants. B model coefficients for AMR gene families
significantly associated with each subregion are shown. North Africa was the reference group. In
coefficient plots, bars are the coefficients and black lines are the standard deviation. Source data

is provided in the source data file.
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339  Fig. S12: Some AMR gene families are taxonomically linked.
340  Model coefficients for AMR gene families significantly associated with taxonomic families are
341  shown. Bars are the coefficients and black lines are the standard deviation. The p-values for each

342  association is above or below the coefficient. Source data is provided in the source data file.
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Fig. S13: Travel duration has a small but statistically significant effect on AMR gene
acquisition.

A The x-axis is the travel duration in days and the y-axis shows if a traveler acquired a AMR gene
or not. Each point refers to one gene in one individual. Genes are included if they were not found
in the pre-travel timepoint. Point color indicates travel region. The p-value and estimate from a
generalized linear model fit to these data is given in the top right of the panel. B shows the
difference between the bootstrapped travel duration distributions of the TRUE (gene acquired) and
FALSE (gene not acquired) groups. The lines give the 95% confidence interval for the difference

and the point gives the estimate. Source data is provided in the source data file.
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Fig. S14: Putative mobile genetic elements are more prevalent after travel.

A The left panel shows putative mobile genetic element counts detected in metagenomic
assemblies normalized by the genomic content (megabases) in each assembly. Each point is a
sample and the boxes are the medians with interquartile ranges for the pre-travel samples in blue
and the post-travel samples in red. The p-value (paired Wilcoxon test) for the comparison is given
at the top of the panel. The right panel shows the difference between the bootstrapped distributions
of the post- and pre-travel samples. The red line gives the 95% confidence interval for the
difference and the point gives the estimate. B The bottom panel shows the comparisons of AMR
gene abundance before and after travel to the four subregions in this study. Points correspond to
samples and boxes give the median and interquartile ranges. pre-travel is shown in blue and post-
travel is shown in red. The p-values (fdr corrected paired Wilcoxon tests) for comparisons within
region between the pre- and post-travel samples are shown above each comparison. The top panel
shows the difference between the bootstrapped distributions of the post- and pre-travel samples.
The red line gives the 95% confidence interval for the difference and the point gives the estimate.

Source data for all panels is provided in the source data file.
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Fig. S15: Travel destination is not associated with putative mobile genetic element detection
in post-travel sample metagenomic assemblies.

A Number of putative MGE elements per megabase detected in post-travel samples from the four
travel subregions. The p-value for an ANOVA comparing the means for the four subregions is
given in the top right of the panel. B shows the comparisons from panel A split by annotation
type. The p-value for an ANOVA comparing the means for the four subregions for each
annotation type is given in the top left of each panel. For all plots, points correspond to samples
and boxes give the median and interquartile ranges. Source data for all panels is provided in the

source data file.
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